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Optical excitation of electrons in an asymmetric double quantum well is theoretically

examined. The well is biased to align the excited levels and permit resonant electron tunnel-

ing. Emphasis is made on the photoinduced transfer of electrons counter to the bias electric

field force. Systems with a weak polarization relaxation (dephasing) are studied using the con-

ventional technique of the Schr6dinger equation. A density matrix approach is developed to

describe optical excitations in the presence of an arbitrary dephasing. Quantum beats, which

follow a short-pulse excitation of the double well, are shown to crucially depend on the de-

phasing. The excitation profiles obtained for cases of different dephasing reveal the full range

of tunneling coupling between the wells from completely coherent to incoherent (stepwise).
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INTRODUCTION

The aim of this paper is to theoretically consider processes of optical excitation and

electron transfer in an asymmetric double quantum well, i.e., in a system consisting of two

different quantum wells coupled by electron tunneling. We will concentrate on intersubband

electronic transitions, which are excited by far ir radiation and consider both optically linear

and nonlinear effects. We will focus on the effect of the light-induced transfer of electrons from

one well to the other one in the double quantum well. It is important that in biased quantum

wells such a transfer can occur against the electric field force and with high quantum yield (up

to 0.5).

A quantum well is a semiconductor heterostructure (see, e.g., Ref. 1) whose potential

confines electrons to a small region. Such confinement brings about quantum splitting of the

electron energy bands into subbands separated by excitation energy on the order of h 2/m*a 2 ,

where m* is the electron effective mass and a is a confinement size (width of the well). In what

follows, we will assumne that the conduction band states are populated due to a modulation

doping of the barrier regions and/or an incoherent optical excitation from the valence band,

and consider purely electronic transitions between subbands of the conduction band [often

called QWEST (Quantum Well Electronic (inter)Subband Transitions)]. We will also assume

the electron density to be small enough to exclude excitonic and other many-body effects.

Much work has been done on the electronic, optical and kinetic properties of semicon-

ductor double quantum wells (see, e.g., Ref. 1 and references cited therein, and also recently

published papers2 - 13, which are relevant for the present work). A fundamental phenomenon,

which is a subject of the study, is resonant tunneling between the quantum wells. A distinc-

tive feature of this phenomenon is a considerable enhancement of the tunneling probability

if the energies of the donor and acceptor levels are close enough. To describe theoretically

this phenomenon or interpret experimental results, most of the above cited works rely on the

use of the Schrddinger equation. In this approach l , the wave functions of resonant levels in

the wells are mixed due to tunneling, and these states repulse forming a doublet separated

by the energy 2 Irl, where r is the tunneling amplitude. The tunneling is described by the [

delocalization of the electron wave function. Such tunneling is often called coherent, and we

will follow this terminology. It is well understood (see, e.g., Refs. 3, 4 and 7) that relaxation

destroys coherence, and makes tunneling incoherent (stepwise). When the relaxation rate r od-t-

2 1-, fl Special
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becomes on order of the tunneling amplitude r or greater, the incoherent (stepwise) tunneling

takes place between non-mixed states.

To describe a general case of an arbitrary relaxation we will use the density matrix

technique, which allows one to fully take into account the relaxation, including the dephasing

contribution to the polarization relaxation rate. Such contribution, which is usually neglected.

may be important. The Schrbdinger equation approach will also be used below to describe

coherent tunneling for the sake of comparison.

To explain the essence of the electron transfer effect, let us consider an asymmetric double

quantum well with an electric field applied perpendicular to the well plane. The schematic of

the confining potential and electron levels (subbands) is shown in Fig. la with 11) and 12) as

the ground states in the narrow (N) and wide (W) wells, respectively. The excited state in the

N well is 13), and in the W well 14). Let us assume that the electric field aligns the excited levels

13) and 14), so that tunneling from one excited level to the other one is resonantly enhanced.

Qualitatively, the electron transfer effect is most pronounced in the coherent tunneling

case. We should mention that there exists a convincing evidence of feasibility of at least

partially coherent tunneling, based on the observation9 of coherent oscillations in a double

quantum well, which has been suggested earlier 6 . Also, the possibility of partially coherent

tunneling is witnessed by the observations of the electron transfer kinetics independent of the

barrier width3 , and of the resistance resonance in coupled quantum wells 3 . However, it is

not known how strongly the observed effects are changed if relaxation, especially polarization

relaxation, is appreciable. Below we shall describe a coherent picture of the electron transfer

effect and address a general case in Sec. 3.

In the coherent case, the aligned excited states form a doublet, the upper and lower

components of which we denote as 1+) and I-). The I±)-state wave functions are delocalized

over both the N and W wells due to resonant tunneling. In contrast, the lower levels are not

aligned, and the I1) state is basically localized in the N well and 12) in the W well. Since the

subband splitting of the W well is smaller, the overall ground state is Il) in the N well (see

Fig. 1b). We assume both the electron density and temperature to be not very high, so that

only the I1) state is considerably populated.

Suppose that ir light excites an intersubband transition in the N band, i.e. one of the

transitions of the type II) -- 1±) shown in Fig. lb by a wavy arrow. Since the splitting of

3



the levels in the N well is assumed to be considerably greater, the radiation does not excite

a transition in the W well. The electron excited to either of the J±) states is quantum-

mechanically delocalized over both the wells. Subsequent relaxation brings about electron

transitions to the ground states 1) and 12) shown in Fig. lb by dashed arrows. The transition

rates are proportional to the probabilities for an electron to be localized in the corresponding

wells and, for aligned levels, are on the same order of magnitude. Thus, with an appreciable

probability, the electron comes to the state 12), which is mainly localized in the W well.

Summarizing, a net result of the photoexcitation of the intersubband transition in the N

well is a transfer of the electron from the N well to the W well in the direction of the potential

increase (see Fig. 1b), i.e. against the direction of of the field force. Indeed. the energy needed

for such a transfer is taken from the exciting radiation. Note that if the transition in the wide

well is excited, the electron transfer would occur in the direction of the field force.

The closest counterpart of the above described effect is the observation by Sauer, Thonke

and Tsang2 of photoinduced space-charge buildup due to asymmetric electron and hole tunnel-

ing in coupled quantum wells. The effect of Ref. 2 is similar to the present effect in regard to

electron transfer against the electric-field force but, nevertheless, is essentially different in the

following respects. First, there is no relaxation involved in charge buildup in Ref. 2, and, as a

result, the electron buildup is minimum for the levels aligned, while in our case it is maximum.

Also, for the aligned excited levels after switching off the optical excitation, the charge, which

has been transferred between wells, disappears in a time on the order of the resonant tunneling

time, while in our case the charge transferred is stable on this temporal scale. Second, the

effect 2 is induced by interband transitions, and, therefore, the portion of the photon energy

accumulated in the potential energy of a transferred electron is small, as distinct from the

present effect based on intersubband transitions. Third, the charge transfer in Ref. 2 is based

upon the difference in the tunneling time of the electrons in the conduction band and holes

in the valence band, while no conduction-band holes participate and no such requirement is

relevant for the present effect.

The Schr6dinger equation description is presented in Sec. 2. The density matrix approach

is developed in Sec. 3, including obtaining the basic equations (Sec. 3.1), study of the temporal

dynamics (Sec. 3.2), stationary solutions (Sec. 3.3) and numerical examples (Sec. 3.4). The

results obtained in the paper are discussed in Sec. 4.
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2. COHERENT ELECTRON TRANSFER

IN SCHRODINGER EQUATION FORMALISM

An electron in a heterostructure is characterized by the quantum number of the state in

the well i - 1, 2, +, - and the momentum p of the movement in the well plain, its energy being

ei +P 2 /2m*, with ei as the subband edge energy. For typical times of interwell tunneling, which

are normally much less then the electron translation relaxation times, one can consider p as a

conserving quantum number. Also, the photon momentum is much less then a characteristic

electron momentum, which allows one to consider p as conserved by the interaction with light.

Taking into account that subbands in the well are highly parallel, one concludes that the

energy of an intersubband transition J, p -- i, p, either tunneling or electromagnetic, does not

depend on p, and is simply the transition energy for the states in the well, eij _= e, - ej. These

arguments allow one to describe electron states in the well and kinetics of the intersubband

transitions separately from the lateral movement, as conventionally done.

The maximum counter-field transfer effect occurs at low temperatures T < 1/m*a2 ,

which we assume. The rate equations describing the populations ni of the states i), i =

1,2, -, + have the form

Onl On2
= -w~nl+ (7f:k + w±) n± + 712n2 ,= 7 2±n± - 712n2

,9±= w~nl - (w± + -y±:) n±

Here ± means either + or -; -yi are phenomenological rate constants for decay from higher-

to lower-lying states, ji) - }j), i = +, -, 2, j = 2, 1, and -t± = 72± + 7u±; w+ and w-

are well known Einstein coefficients for the transitions I1) --* 1+) and I1) -+ I-), which can

conventionally be expressed in terms of the corresponding dipole matrix elements d+1 and d- 1 ,

W+ = IEd: 1I2 r+1 [(l- 1)2 + .1ij , with E as the amplitude of the light wave and Q
as the light frequency. To simplify notations, we use the system of units in which h = 1.

The probability of electron transfer from the N to W well is equal to the population

number n2 . Assuming that the radiation excites one of the transitions 11) -- 1+) or 11) -- I-),
one finds from the stationary solution of Eq. (1) that

n2 = 72+W+ [727:k + w± (272 + 72)] , (2)

where 72 712 is the decay constant of the state 12).
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For the limiting case of nonsaturating light intensities, w± < 27 (272 + 72)-1, as-

suming both transitions 11) --* 1+) and 11) -* I-) to occur, and taking into account that the

contributions of these transitions are additive, one obtains from Eq. (2)

n2 = 72 ' (w+-Y2+/7+ + W-72-/7-) (3)

The corresponding expression for the transfer quantum yield Q has the form

Q = t+/Y + W-21- (W+ + W_) -1(4)

As one can see from Eqs. (1)-(4), the electron transfer kinetics is determined by the decay

constants yji and the matrix elements d±1 which, in turn, depend on the wave function mixing

between the individual wells. This mixing is described by the probabilities pN) and p'W) for

an electron in the mixed 1±) state to be in the corresponding N or W well.

To find the decay constaYLts -Y,,, we invoke a quantum-mechanical idea that the relaxation

causes localization, and an electron localizes in the well in which it has experienced the relax-

ation. This assumption is valid if the nonresonant tunneling rate is small, which is equivalent

to neglect of the overlap of the wave functions in different wells (see also below). The decay

rate of the excited electron in the N well is equal to the decay rate 73 of the state 13) and,

similarly, the decay rate in the W well is 74 of the 14) state. To determine d±,, we take into

account that, with neglect of the overlap, the electromagnetic radiation couples the ground

state I1), which is mainly localized in the N well, only to the 13) component of the mixed

states. From these arguments we find

Y1± = 73 (  
, 72± = 7 4 P±W) Id±1-i = Id31 1 p1N) (5)

An important characteristic of the electron transfer process is the mean quantum yield

Q for the wide-band radiation, i.e. for light whose spectral width is much greater than the

radiation transition widths. It is defined by the expression [cf. Eq. (4)]

Q = 7 2 1 n2 dl [f (w+ + w)di].] (6)

From this, taking into account Eqs. (3) and (5), one obtains

74 p(N)p(W) p(N) (W) 1  p(N)
6(7)
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To determine the transfer probability (2), we need also to estimate the interwell transition

constant 7f2 712. Note that 72 is proportional to the probability for an electron in the

state 12), which is mainly localized in the W well, to appear in the N well and experience a

relaxation there. Assuming the relaxation of all states in the N well to occur with the same

rate, determined, e.g. by collisions, one can estimate _Y2 - 7 3 p
( N) , and obtain from Eq. (2)

the saturated transfer probability
(,) = p(N), DW)y - (

Since the nonresonant transfer rate is much less than the resonant one. i.e. p(N) << p(W), the

value of n (") is close to unity.

We have numerically solved the stationary Schr6dinger equation in the coordinate repre-

sentation with the confining potential V(x) shown in Fig. 1. For the method of solution, the

dependence of V(x) on the chemical Lomposition of the well and effective mass m* adopted in

the calculations, see Ref. 5.

As an example, we consider the double well system (see Fig. 1) AW barrier/W weU/WN

barrier/N well/NB barrier with the widths equal to 100/19/8/14.5/100 nm, all the barriers

being Alo.1 Gao.gAs, which corresponds to the well depth U0 = 77.5 meV. The solution yields

the dependence of the excited level detuning f43 = 2.56(E - 6.4) meV, where E is the bias field

in kV/cm; the aligning electric field is E0  6.4 kV/cm. For the aligning field, the solution

gives the energy levels (meV) e1 = 4.7, C2  15.9, C_ = 40.9 and f+ = 43.9; the tunneling

amplitude r = 1.5 meV; the dipole matrix elements d+i/e = 2.4 rn, d-1/e = -3.0 nm with
e as the elementary charge; and the localization probabilities PN) = 0.98 P(W) 0.99,

~ue iiare, 1  9 2 0.9
p(N) = 0.58 and p(N) = 0.42. From the last set of data we see that the state 11) is, in fact,

localized in the N well and 12) in the W well, while the J+) and J-) states are almost evenly

delocalized over both the wells, as assumed above.

The transition rate y2 with p(N) - 0.01 (see above) is very small with respect to 37,

which ensures a high saturated probability (8) n2) z 0.99, low optical excitation rates 00

needed to achieve saturation of the 12) state, w( s ) - 72 < /±, and comparatively long lifetime

t' = 721 of the transferred charge after switching off the radiation. In practical terms, the

typical decay rate of the excited states is 7 = 1012 S- 1 = 0.66 meV, which yields tc = 0.1 ns.

For the linewidth of , 2 meV characteristic of QWEST and the dipole elements given above,

the saturation light intensity I = e +7 2 /a+ can be estimated as 1, - 60 kW/cm 2.
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Besides the data shown above, the computation provides escape rates Y'Bi from the Ii)
states in the double well to the B region (Fig. 1b), i.e. in the direction of the potential drop. As

expected, the largest of the obtained rates are those for the excited states, -B- = 1.8 ueV and

-YB+ = 1.1 peV. These escape rates play the role of the rate constants for a parasitic process

of the light-induced leak from the quantum well. However, comparing "YB+ to the tunneling

amplitude r = 1.5 meV and also to the rates -Y2± - 0.3 meV of the population of the 12) state

from J±), we arrive at the conclusion that the escape current is negligibly small with respect to

the interwell tunneling current, and can cause only a very small positive charging of the well

system as a whole without affecting the counter-field electron transfer.

The mean transfer quantum yield Q as a function of the bias electric field E calculated

from Eqs. (5) and (7) for 73 = 7t is shown in Fig. 2 by a solid line. As one can see, Q has a

rather sharp resonance at the field E = 6.4 kV/cm, which exactly corresponds to alignment

of the excited levels in the two coupled wells. The maximum value is ;--z 0.55 and, as

the computations show, it essentially does not depend upon the barrier width, which is a

consequence of the coherency of the tunneling. As one can conclude from Eq. (7), the most

favorable case for the counter-field transfer is not the simplest choice 73 = 74 as above, but

rather "/4 > y3, in which case Q can be close to unity.

The tunneling amplitude r is an essential parameter, which determines whether the tun-

neling is coherent or not (see Secs. 3 and 4). This amplitude, which is equal to half the minimum

value of the doublet splitting c+-, has been determined from the solution of the Schrbdinger

equation as a function of the width LWN of the interwell (WN) barrier for the system of the

a'ove type with the widths 100/19/LWN/14.5/lO0 nm. The result is shown in Fig. 3, from

which we can see that, in the range of LWN considered, r is an exponential function of LWN,

as expected.

The numerical solution given above illustrates basic features of the counter-field transfer

effects, and, in principle, takes into account mixing between all the states in both the wells,

and effect of the continuum states. However, the nature of the numerical solution is such

that the analytical dependence of the effect on the parameters of the problem remain unclear.

To elucidate this dependence, we will employ a conventional (see, e.g., Ref. 1) approximate

approach based on the mixing of only two excited states, 13) and 14) and neglect of the overlap

integral. The latter is equivalent to the orthogonality condition (314) = 0. The transfer
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integral t in the notation of Ref. 1 is exactly our tunneling amplitude r, and the approximation

under consideration is nothing else but the tight-binding model with zero overlap in the basis

of the two states 13) and 14).

The stationary Schr6dinger equation in this basis is reduced to

(e3 -,±)(3±)+r*(41±) =0 , (=4 -E±)(41±)+r(31 0 , (9)

with e± as eigenenergies. The solution of Eq. (9) has the familiar form e+ =

S[C4i + E3 ± (C4 3 + 4 17 I) I] where f 3 14- f 3 is the energy mismatch of the excited

levels. Also, the localization probabilities follow from Eq. (9) as

(N) P(W = - p(W) = 1 - p(N) = 4  I 12 (10)p+N p+_w 2- + 12 12 2(10),

[e43 + ( E43 + 41 1 ] +4J

Substituting Eq. (10) into (2) we find the analytical expression for the transfer probability

n2 = IGTI 2 74'2 ( + 4T( - 2e)2 + 1 (74f 3 - 73 f3 (11)

1 / 43 + ~ i 4-r (4E]

Here the Rabi frequency G = Ed1 3 and, as usual, the notation eii stands for ei - fi.

The mean quantum yield of transfer is found from Eqs. (7) and (10)

= I2  +74)74 [ITr2 (_f3 +74)2 + 374 ] 1  (12)

As we see from Eq. (12), Q as a function of the level mismatch C43 has the form of a symmetric

peak with width Ir (74 + -t3) (7374) - 1 / 2 and maximum magnitude Qnaz = (1+ -t73/4)- '. For

the simplest choice 73 = 74, using the dependence 43 = 2.56(E - 6.4) meV (see above), the

mean quantum yield (12) is plotted in Fig. 2 as a function of E by the dashed line. We see

that both in magnitude and form a simple analytical formula (12) agrees well with the result

of the complete numerical calculation (Fig 2, solid line). This shows good applicability of the

truncated-basis tight-binding approach used above to derive Eq. (12).

As mentioned above, Qmaz = 0.5 for 73 = 74, and Qmaz --+ 1 for 74 > 73. The values

of (,n,, do not depend on the tunneling amplitude r nor, consequently, on the barrier width.

This is because of the coherent quantum tunneling assumed above. A high quantum yield of

transfer demonstrated above and its dependence on the relaxation constant ratio deserves a

9



physical interpretation. The electron transfer counter to the electric field force is based on

the quantum-mechanical delocalization of an electron over both the wells. This delocalizatior

counterplays the electric field force and dominates in the case of realistic fields, where the

above approximation is valid. As a result of the quantum delocalization, the electron can be

found in the W well with a 50 percent probability. The relaxation in the W well with rate -f4

causes the electron to get localized in this well, i.e. transferred against the field force. The

relaxation in the N well with the rate -3' brings the electron back to the vround state, i.e. is a

parasitic process. Therefore, Q - 1 for -y4 > f3.

3. EXCITATION AND ELECTRON TRANSFER

IN DENSITY MATRIX FORMALISM

3.1. Basic equations

In the previous section we have described the electron excitation kinetics and counter-

field transfer using the Schr6dinger equation formalism. Such an approach is adequate for

the coherent mechanism of the ele- tron tunneling. The main drawback of this approach is

the neglect of the polarization relaxation processes, which tend to destroy the coherence of

tunneling. Below we present a general theory based on the density matrix approach, which

allows one to describe the full range of the interwell tunneling regimes from completely coherent

in the case of small polarization relaxatio, rate to the opposite case of completely stepwise

for strong polarization relaxation. The simplifying feature of our approach is the use of the

tight-binding model in the restricted basis of the states in isolated wells 11), 12) 13), 14) (see

Sec. 2) and of the relaxation constant model for the relaxation term in the equation of motion

for the density matrix (see below).

We start with the Hamiltonian of the system in the form H -j eialai + E-j Viataj,

where at and a are the electron creation and annihilation operators, with ij = 1,2,3,4.

The one-electron operator V describes interaction with the electromagnetic field and electron

interwell tunneling, and its independent nonzero elements are V31 = -d 3 l (Ee - tt + c.c.),

V43 = r. The one-electron density matrix r is defined as rij= (a)a). Its diagonal matrix

elements are the population probabilities ni E rii.

The equation of motion for r can be obtained in the usual way by commuting the pair

operator atai with the Hamiltonian and adding the relaxation term. This has the well-known

10



form
Or i--[r,f+V]-R ,(13)

where the one-electron energy operator e is defined as (i lei j) = Eiij. and R is the relaxation

operator. In the low-temperature case, i.e. for neglect of thermal activation, the diagonal part

of R describes spontaneous decays from higher- to lower-lying levels, and in the the model of

relaxation constants has the form

R,= n Yji z - 3j jn , (14)
i j j>i)

where -yij is the rate constant for spontaneous decay 1J) -- li).

In what follows, we will neglect direct relaxation transitions which involve nonresonant

interwell tunneling, 13) --+ 12) and 14) -+ 11), on the ground of small probability of nonresonant

tunneling with respect to the resonant one. The rates of the above processes are negligible

with respect to the rates of the collateral two-step processes involving the resonant tunneling,

13) -+ 14) --+ 12) and 14) -- 13) -- 11), which will be taken into account. Such a neglect is

equivalent to the assumption of local character of the relaxation [see the discussion preceding

Eq. (5)]. However, the nonresonant tunneling process 12) -- I1) should be included despite its

small rate, because there is no resonant process to compete with it. Thus, the following decay

rate constants should only be taken into consideration: '3 7= 13, 74 7 24, 72 ' "Y12. These

rate constants have the same meaning as in Eq. (5).

The nondiagonal part of R describes the polarization relaxation and in the model under

consideration is given by
1

Rij = Fijrii , Fi (-Yi + -i) + rij ,(15)2

where 1ij ! 0 is the pure dephasing term.

Let us introduce, in the usual way, the density matrix in the interaction representation

p = exp(-zet)r exp(,ft). The equation of motion for p follows from Eq. (13),

=- I[P,U]- S (16)

Here U = exp(tet)V exp(-tft) and S =_ exp(zt)R exp(-zt) are the interaction and relaxation

operators in the interaction representation. The diagonal part of S obviously coincides with
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that of R as given by Eq. (14). The nondiagonal part of R is similar to Eq. (15) with the

substitution pij for rij

The equations for the density matrix elements follow from Eq. (16) taking Eqs. (14)-(15)

into account:

,- 21m[Pl 3 V31 exp(ze 3lt)] + - 2 n 2 + '73n3

an2

-- -- f2n2 +^4n4
,9n3

- 21m[pl3V31 exp(zE3 1t)]- 73ft3 + 2Im[p4 3r* exp(-ZE43t)]
0N4
n - 21m[P4 3r*exp(-zE43t)j--f 4 n4 , (17)

__Pl3 - z(n 1 - n3)V 31 exp (-E 31t) + ZP14 T exp (Ze43t) - F13P13

R - -zp 3 V*1 exp(-E 31 t) + zp3r* exp(- 4 3 t)- Ft4P4
04343

49P43 -ZPr1 4 V3* exp, (-ZE3 1t) + z (n 4 - n3 ) i- exp (IIE43t) - r34
at

The system of equations (17) is exact for the model under consideration. Below we adopt

the resonant approximation, which is also synonymously called the Rotating-Wave Approx-

imation (RWA). Applicability of this approximation is well established for optical fields not

very strong. Technically, RWA is equivalent to taking into account only the terms containing

slowly-oscillating temporal exponentials in Eq. (17). Doing so, we can explicitly determine the

temporal dependence of the polarizations,

P13 = 13exp[z(Q- E3 )t] , P14 = ,1 4 exp[z(Q - E4 1)t] , p43 = P4 3 exp[,E4 3 t] , (18)

and find the system of equations with constant coefficients
___ On 2 __

-n- 21m(P 13G)+Y 2n2 +-) 3n3 , Ot - -72n2 + r4n4,

at
an_= 21m( f 1 3G) - 73n 3 + 2Im(0 43 r*) Ln - -2Im(P 43 r*) - 74n4at tIM3 (9f14 (9& 1 =ZG* (n, - n3) + ZT014 - 913013 ? zG*043 + Z7*l 9 14014,

0043-- = - (n4 - n 3 ) + zG*i31 4 - 9g343 ?

where the notations are introduced [G is defined after Eq. (11)]

93-_ 3+t(Z-1631) , 14-rI4+t(SI-f4I) , g4 = r43 +M41 (20)
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3.2. Temporal dynamics

The fundamental system of equations (19) describes both the temporal evolution and sta-

tionary levels of the electron polarization and population numbers. Beginning with dynamics.

the simplest effect is known to be the quantum beats: the system is excited with a short pulse

of light and, after the pulse is over, the population numbers and polarizations are changing

in time, in some cases in an oscillating manner. Such observation conditions axe in a close

correspondence with the experimental study of Ref. 8.

The kinetics of the quantum beats is described by Eq. (19), where G = 0. In this case,

we see that the equations related to the tunneling-connected states 13) and 14) decouple from

the rest of equations (19), forming a closed system

On 3 _n4

^ -' 3n3 + 21m(r*i43) , - = -- Y4n4 - 2Im(7*,i 4 ) (0t 194 t (21)

= zT(n4 - n3) - 4 3fi43

at
The solution of this system is given by a superposition of exponentials eA, t with the coefficients,

which can be found from the initial conditions determined by the excitation process. However,

the corresponding characteristic exponents A,, are the eigenvalues of Eq. (21), which do not

depend on the initial conditions.

The system (21) is equivalent to four real equations (the matrix element 43 is complex).

The corresponding characteristic equation is fourth-order and yields analytical expressions

for the four eigenvalues A,. However, these expressions are too complicated. Therefore, we

will assume simplifying conditions, which do not affect the general properties of the solution.

These conditions are zero level mismatch (e 43 = 0) and equal decay rates of the excited levels

(-ys = "y4). In this case, we obtain the four characteristic exponents A1 , A2 , A+, A- to be

1-(-,±F ) ( 1  2 a  -4,.12) 1, 2 (2

A1 = -73 , A2 = -r43 , A± 2 (73 +r43) ( 43 -4 (22)

We can see from Eq. (22) that the first two exponents correspond to purely decaying (ape-

riodical) kinetics. The two other exponents A± may have an imaginary part and, consequently,

describe an oscillating evolution depending on the relation between the pure dephasing term

1743 [cf. Eq. (15)] and the tunneling amplitude 7. Namely, if r43 < 4 ITI, then the oscillations

of the populations n3, n4 and polarization 3 with the frequency wb = (4 I, 2 - 43
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are possible, depending on the initial conditions. Let us emphasize that wb does not depend

whatsoever on the population decay rates yi.

Physically, the oscillations considered above mean coherent tunneling transitions of an

electron from one quantum well to the other and back. These oscillations decay with the

rate IM + P'43/2 depending on both the population decay constant -33 and the dephasing rate

1743 . Such coherent oscillations have been suggested in Ref. 7 and observed experimentally in

Ref. 8. However, in the theoretical description of Refs. 7 and 8, the dephasing has not been

taking into account. If the dephasing is negligible (F43 < fr), the frequency wb of beats is

equal to the doublet splitting, and for the case of exactly aligned levels we have wb = 2 Ir, in

accord with Refs. 7 and 8. However, in a practical situation, the dephasing is not small, and

wb < 2 I-r. As the results obtained above show. the dephasing relaxation rate r43 is a very

important parameter, which not only determines the values of the frequency and decay rate of

oscillations, but their very existence.

3.3. Stationary solutions

The stationary solution of Eq. (19) can be obtained in a straightforward manner. The

expressions for the population probabilities of the excited levels are

n3 = [c(b + N4) - a (a + -Y4)] I c[b (3 + -y4/-t2) + 2741 +

3 -t34 + b (73 + IN4) + a [13 (1 + (4/ 72) - a (3 + ^4/ -Y2) - 3 -41 (23)
/ (23)

n4 [a (3 -a) +cb]Ic [b (3 +74 /-Y2 )+ 27"41+

3f4 + b(-13 + -y4) + a [73 (1 + 7'4/72) - a(3 + 7'4/7"2) - 31-1-

where the notations are introduced

a - 21 21GI 2Re (f-') , b- 2r 2Re [(g 13g14 + r 2) f-1]

c 12GI2Re [(g-3 g1 + IG2) f- 1 ] , f g43 (g13g14 + 1,r12) + g13GI2

As follows from from the second of the equations (19), the probability n2 of the electron transfer

is simply related to n4 by

n2 = 7 47Y;-I n4 (25)
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The expressions (23) are exact. However. they are somewhat cumbersome and difficult

to analyze. In particular, it is difficult to see from Eq. (24) how the Schr6dinger approach

results (see Sec. 2) can be reproduced. Therefore, prior to giving numerical examples, we shall

consider simplifying limiting cases, restricting ourselves to an optically nonsaturated regime,

IGI < -i, rj. Assuming this, we obtain from Eq. (23) closed expressions for the population

numbers

21GI fr2 1, 2+E
n3 = --X-- [1 12 + r,3F,4 - EI - E3 1 )(Q - e4i)] [IrLr43 (2r,4 - I4) + IfF14 (F +43)] +

[r13 (Q - 641 ) + r14 (Q- ) [I31 (2r 43 (Q - 41) - E43) + 4 (2 - E 1)4(3 + f 43)] }

= 2-r12 G 2  [17-1 + r,3r,4 - (Q - f31 ) (Q - ,,)] r43 (2r14 + -3) +

[r, 3 (Q - 14 1) + 714 (Q - el )] [-DE4 3 + 2r43 (Q - C41

(26)

where the notation is used

X 1 [112 + r13r14 - (Q - E31 )( - E4 1)] 2 + [113 (Q - f4) + r14 (Q - 31)12} (27)
[21r12r43 (-Y3 + 74) + 7374 (r2 + 2)]

The populations (26) are proportional to IG 12, i.e. to the light intensity, as expected.

From Eq. (26) we can see how to reproduce the results of Sec. 2. If the polarization

relaxation rates are much smaller than the tunneling amplitude,

['13, ['14, ['43 < Irn , (28)

the denominator X (27) in Eq. (26) becomes nearly zero for Q2 = E+1 or 2 = E-1, where e± are

the energies of the doublet levels. In this case, each of the populations n3 and n4 as a function

of frequency has two nonoverlapping peaks centered at the frequencies f±1. In the vicinities of

these peaks, the expression for n4 has the form

= 21T1G12 (r , 4e±3 - F 3 f:F3) (73E43 - 2r4eF3) (29)

412+ 43 )(1 _ E±)2 + ([i 4 ,E±3 - l'3EF,3 )2] [217r1 2[4 4 + + 2774

Taking Eq. (25) into account, we conclude that Eq. (29) agrees with the result (11) of the

Schr6dinger equation approach only if, in addition to the condition (28), pure dephasing is
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negligible with respect to the population relaxation,

r 1 4 < 4 , F 13 < 73 , '43 < 4 + Y3 (30)

Inapplicability of the Schr6dinger equation approach in the presence of the dephasing is evident

if consider the mean quantum yield Q (6), which can be calculated from Eqs. (25) and (29),

Q = 2 171' 4374 [2r 4 3 ITn2 (73 + _4) + 73Y4 E4 ] (31)

in comparison with the corresponding result (12). Note that the condition (28) may be realistic.

but (30) is normally not the case (see below). Therefore, taking into account the polarization

relaxation with the use of the density matrix techniques, is essential.

3.4. Numerical illustrations

In this subsection we numerically illustrate properties of the optical excitation in the cou-

pled quantum wells, with emphasis on the counter-field electron transfer. We aim to elucidate

the effect of the polarization relaxation on the electron excitation and transfer.

The exact expressions for the population probabilities n3 , n 4 of the excited levels are

given by Eq. (23). The probability n 2 of the electron transfer in accordance with Eq. (25)

simply copies n4. Since the expressions (23) crucially depend on the polarization relaxation

constants r13, r 14 , F 43 , we begin with estimating these constants.

Experimentally, the polarization relaxation constant is found as the width of the optical

absorption line under nonsaturated excitation conditions. Using such an approach, it has been

established in Ref. 14 that at the temperatures T < 100 K and the transition energy e < 100

meV, the transition width r does not significantly depend on T, and T/e ; 0.03. These data

show that the contribution of the optical phonons to the polarization relaxation under the

conditions used is small. 4 The optical phonon contribution will be even smaller in the absence

of optical phonon emission, which is the case for C3 1 < wo, where w, is the optical phonon

frequency. This condition is satisfied for the system under consideration.

With the optical phonons excluded, the remaining mechanism of the dephasing is based

on the fluctuation of plus-minus one monolayer in the width of the well. This mechanism is also

supported 15 by the experimental data on the interband transitions in quantum wells. Assuming

this mechanism, we arrive at a simple estimate f/e ; 26a/a, where a is the well width and ba is

16



its fluctuation, 6a 0.3 nm. In our case, e.g. for the N well, a = 14.4 nm and L/E . 0.04. For

a crude estimate, the agreement with the experimental value is reasonable. For the example

considered, this estimate yields 1713, r14 - 1.5 meV. In the absence of optical phonon emission,

a typical lifetime of the intersubband transition is -- 3 ps. This yields the decay constants

y3, 74 - 0.2 meV. Thus, the dephasing contributions to the polarization relaxation constants

dominate, in contrast to the applicability condition (30) of the Schr6dinger equation approach.

To estimate the interwell polarization relaxation rate 143, we notice that the fluctuation

of the excited level energies 63 and E4 are always greater than those of the the ground states el,

E2. In this case, assuming the fluctuations in the different wells to be independent, we obtain

a simple relation r43 (3 + -14) 1/2 which will be used below.

The effect of the polarization relaxation on the electron excitation can be traced in Fig. 4.

We can see in Fig. 4a that in the case of a weak dephasing (1713 = 14 = 0.1 meV), the excitation

contours are two almost separate peaks, which, as can easily be verified, are positioned at the

transitions frequencies r± of the doublet levels. The asymmetry of the excitation contour is

due to nonzero level mismatch E43 .

We emphasize that near the peak maxima n 4  n n 3 , which means that the electron transfer

counter to the electric field force occurs with a high probability, an electron is excited by the

light to the 13) state, but appears with close or even greater probability in the 14) state localized

in the other well. Using Eq. (25), we can make sure that in the spectral maxima n 2 ; 1, i.e. the

populations are saturated. At the same time, the parameter, which governs the polarization

saturation, IG /13 < 1. This means, in particular, an absence of field broadening and low

probability of excitation into the continuum.

With an increase of the dephasing rate (see Fig. 4b,c), the spectral peaks are broadened

and overlap. However, the population number n 4 and, consequently, the transfer probability

n 2 (25) do not considerably diminish. This witnesses that the counter-field transfer effect

persists even for relatively strong dephasing. For IF13 = r14 = 10 meV, the doublet structure

is completely absent, and the absorption contour is symmetrical and centered at the frequency

C31 of the transition in the isolated narrow well (Fig. 5c). This means that the electron is first

excited within the N well and then tunnels into the W well, i.e. the tunneling is incoherent.

The effect of the polarization relaxation is even less evident for the case of nonequal

dephasing rates in the two wells shown in Fig. 5. With an increase of the dephasing in the
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wide well, the peaks begin to broaden (Fig. 5a, cf. Fig. 4a), but then this broadening stops

(Fig. 5b) and reverses: for strong relaxation we observe a single narrow peak centered at the

transition frequency f31 of an isolated narrow well (Fig. 5c). Again, this fact witnesses that

the tunneling is incoherent. The narrowing of the absorption contour for the case of strong

dephasing is a counterpart of the wc " known spectroscopic phenomenon of the spectral line

collapse. This narrowing can be understood from the following arguments. With an increase of

the dephasing in the W well, this well behaves like an overdamped resonator. Such a resonator

is known to decouple from a high-quality resonator, which is the W well. In such a way, a well

with a strong polarization relaxation does not considerably perturb the other well.

To focus on the effect of counter-field electron transfer, let us consider Fig. 6, in which

the maximum (in the light frequency) probability of this transfer is shown as a function of

the tunneling amplitude r. Note that for the double-well system under consideration, the

magnitude of r is simply related to the thickness LWN of the interwell barrier (see Fig. 3).

In the case of low-to-intermediate optical saturation (IGI = 0.2), we see from Fig. 6a that

for r < f 13 the transfer probability strongly depend on T, in fact n2 o 1712. This a feature

of a noncoherent electron transfer. With increase of r, the probability n2 levels off. The

greater "Y13, the later this leveling takes place and the lower is the limiting magnitude of n2.

For the typical value r - 1 meV, the transfer probability is very high, n2 ; 0.7. Thus, the

counter-field transfer effect is strong under the realistic conditions considered. For a high light

intensity IGI = 20 meV (Fig. 6b), the transfer is completely saturated, n2 ; 1, in the coherent

tunneling regime. However, there exists an essential difference with the intermediate-intensity

case (Fig. 6a). Namely, the effect of the dephasing is opposite: the higher L13, the higher

n2, and the sooner the saturation sets on. This counterintuitive feature stems from the field

broadening, which prevails over the phase relaxation in this case.

4. DISCUSSION

This paper pursues two interrelated goals. The first is to give a theoretical description

of a novel effect in asymmetric double quantum wells, namely, the electron transfer counter to

the bias field. This transfer is based on the quantum-mechanical delocalization of the electron

over the resonant states, which, in the case under consideration, prevails over the electric field

force (note that the light itself does not exert any significant force). The second goal of the

paper is to develop a theory which describes the kinetics of the electron excitation in coupled
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quantum wells taking into account the polarization relaxation.

An approach based on the Schr6dinger equation provides a comprehensive description of

the problem. This is given in Sec. 2, where general expressions (2) for the electron transfer

probability n 2 and (7) for the mean quantum yield Q of transfer are obtained [see also Eq. (12)

and Fig. 21.

However, the Schr6dinger equation approach is only valid in the absence of the polar-

ization relaxation (dephasing), which always exists in real systems. This relaxation destroys

quantum-mechanical coherence and, rigorously speaking, makes the stationary states of the

electron nonexisting. Physically, the polarization relaxation originates from interaction of an

electron with other parts of the system. in particular, with phonons and impurities or defects.

which are not taken unto account in the Schr6dinger equation. In this case, the density matrix

technique is adequate. Such technique for the optical excitation of a double quantum well is

developed in Sec. 3.

The free (i.e. in the absence of the optical field) time-dependent solution of Eq. (19) [see

also Eq. (20)] gives the frequency of the quantum beats wb. In the presence of phase relaxation,

this frequency does not coincide with the spacing of the excited state doublet, and is determined

by the dephasing constant f 43 but not the decay constants. If the phase relaxation is strong

enough, '43 > 4 Ir, then the quantum beats disappear, completely replaced by a monotonic

relaxation. The results discussed may be of interest for comparison with recent experiments of

Ref. 8, in which quantum beats in the double wells have been observed.

In the stationary regime, closed analytical expressions (23) and (25) for the populations

n 3 and n 4 of the excited states are obtained. The full range of the transition from a nearly

coherent tunneling regime to an almost incoherent one can be traced in Figs. 4 and 5. For

a weak polarization relaxation, the excitation profiles reveal a two-peak structure typical for

the coherent tunneling. In this case, the optical wave plays the role of a probe field exciting

the system to the doublet states 1±). As the dephasing increases, the stationary states 1±)

are no longer a good zero-order approximation, and the interwell coupling becomes incoherent

(stepwise): the first step is the excitation from the state I1) to 13) of the W well followed by

the second step of the tunneling into the N well. In qualitative agreement with the above

picture, with an increase of the dephasing, the double-peak structure disappears, replaced by

a single peak centered at the transition frequency C3 1. If the dephasing in the two coupled
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wells is increased in the same proportion, the excitation profiles are broadened (see Fig. 4c).

An counter-intuitive feature appears in the case where the dephasing is increased only in the

acceptor (W) well: eventually, a collapse of the spectral line takes place (see Fig. 5c).

To avoid possible misunderstanding, we recall that the form of the excitation profiles in

Figs. 4 and 5 is obtained under the assumption that only the transitions from the ground state

I1) in the N well are excited. These transitions are positioned on the energy scale to the right

of the transitions in the W well. Therefore, in practice, the right parts (Q > 30 meV) of the

excitation profiles should be close to the ones shown in Figs. 4 and 5, and the left parts may

differ. However, for the nonsaturating optical excitation, only the transitions in the N well can

occur, because only the 11) state in this well, as the overall ground state, is populated at low

temperatures. Therefore, under these conditions, the excitation profiles are correctly given by

Eq. (26) in the whole spectral region, predicting dependences similar to those of Figs. 4 and 5.

As discussed above, the phase relaxation drastically affects the spectral profiles of the

optical excitation. Also, it is understandable a priori that the probability n2 of the counter-

field electron transfer diminishes with the increase of the dephasing because the transfer is

a resonant effect, and the quality of the resonance is reduced by the polarization relaxation.

A question remains to which degree n2 is affected. The answer is contained in Fig. 6a: for

moderate excitation intensities and the whole conceivable range of F 13 = 0.1 - 10 meV, the

probability n2 changes only by a factor of 0.3. Therefore, the transfer effect itself is rather

stable with respect to the dephasing.

Let us discuss possible experimental observation of the counter-field electron transfer.

This effect can be detected optically by monitoring changes of the intersubband absorption

in the double well: as the transfer proceeds, the absorption band shifts to a lower frequency

by the amount e21 . Electrical detection of the transfer is also possible. In this case, external

conductors should be in contact with the regions A and B in Fig. 1. However, achieving the

regime of a stationary current in the external circuit is problematic, because in this case the

barriers AW and NB should be penetrable for electrons. If so, the optical excitation, apart

from bringing about the counter-field electron transfer, would also increase the rate of the

electron escape from the N well to the B region, i.e. in the direction favored by the bias. Thus

the counter-field transfer may be completely masked by this leak current.

We believe that the most reliable is the detection of the counter-field transfer based on
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the capacitance coupling of the well to an external circuit. Such coupling is achievable even

with the thick barriers AW and NB, thus excluding photoinduced leakage from the N well to

B region discussed above.

In the case of the capacitance coupling, the regions A and B (Fig. 1), containing a dense

electron gas, play the role of the capacitor plates. For the regime of zero current in the external

circuit, the counter-field transfer of electrons induced by switching on of the light brings about

an increase of the potential difference AUAB,

AUAB = 47rean2 Ax/e AX J[l(x)2 -IP 2 (x)I xdx , (32)

where %I'i is the wave function of the li) state, e is the mean dielectric constant of the well

material, a is two-dimensional density of the electron gas in the well, and x has meaning of

the characteristics distance of the charge transfer (for the example considered, Ax = 24 nm).

We emphasize that AU > 0 means that the photocurrent inside the well is directed counter to

the potential drop.

Alternatively, if the capacitor is externally kept under a constant potential difference,

then an exciting light pulse brings about a transient current in the external circuit opposite to

the direction favored by the bias, the total transferred charge being Q = eSan2Ax/L, where

L is the AB distance, and S is the illuminated area; Ax/L z 0.1 for the system considered.

We should point out the the theory presented above does not take into account the

photoinduced electric fields. This condition can always be met if the density a is low enough.

In this case, of course, the potential change (32) is small. However, it is expedient to mention

the probable qualitative effects of the photoinduced fields. The potential increase AUAB, via

changing the electric field inside the well, affects the photoexcitation and electron transfer.

This is a feedback which can produce enhanced nonlinear optical responses, similar to ones

observed in Ref. 6 for the interband transitions, and, possibly, an intrinsic optical bistability.

We shall address these effects elsewhere.
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FIGURE CAPTIONS

Fig. 1. Coupled wide (W) and narrow (N) quantum wells (a - in the absence of bias, b

in the presence, where the excited levels are aligned). Schematic of the confining potential,

energy levels, and radiative (wavy arrow) and nonradiative (dashed arrows) transitions. The

regions A and B containing a dense electron gas serve as electrodes for the capacitance coupling

of the double well to an external circuit. The insulating barriers AW and NB are supposed to

be thick and high enough to exclude considerable tunneling through them (see the text).

Fig. 2. Quantum yield Q of the electron transfer counter to the field force as a function of the

electric field E applied to the double well. The data are obtained from numerical computation

according to Eq. (7) (solid line) and with the use of analytical formula (12) (dashed line).

Fig. 3. Tunneling amplitude r (meV) as a function of the central barrier width LWN (nm)

in the double logarithmic scale.

Fig. 4. Population numbers n3 (solid line) and and n4 (dashed line) of the excited levels

as functions of the exciting light frequency Q (meV) for the dephasing constants shown in the

graphs. The dephasing relaxations in the two coupled wells are assumed equal, r 13 = '14.

The other relevant parameters are IGI = 0.2 meV, 3 = 74 = 0.2 meV, r2 = 0.006 meV, and

E43 = 1 meV. The double-well system under consideration is described in the text.

Fig. 5. The same as Fig. 4, but the dephasing in the narrow well is the same for all the

graphs shown, 1'13 =const, and dephasing in the wide well is increasing, Fr14 = 0.1, 1, 10 meV.

Fig. 6. Transfer probability n2 calculated in its spectral maximum as a function of the

tunneling amplitude r for the dephasing rates -Y13 = 0.1, 1, 10 meV, and the Rabi frequencies

G = 0.2, 20 meV, as shown on the graphs. Other parameters: 714 = 713, the decay rates

73 = 74 = 0.2 meV, -'2 = 0.006 meV, and the level mismatch E4 3 = 0.
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